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Summary

Unmanned aerial vehicles (UAVs) are critical components of the future naval forces. UAV
control and monitoring with autonomous operation will become an absolute necessity and
adaptive cooperation of vehicles is the only practical alternative.

The objective of this project is to develop and evaluate new methodologies for cooperative
(formation) control of multiple unmanned air vehicles. The goal is to have multiple UAVs
working together as a group. Instead of separately assigning distinct tasks to each vehicle, the
operator would assign tasks to the UAV group, which then determines the best way to
accomplish each task, freeing the operator to maintain surveillance over the entire operation. In
this project we investigated Path Tracking and obstacle avoidance of UAVs using fuzzy logic
method. Algorithms for close formation control of multi-UAVs are developed and simulated. We
also investigated fault-tolerant control of single UAVs by neuro-adaptive method. Detailed
description of this method is provided in this document. The project has supported 5 graduate
students with 9 technical papers published.

Technical Details

A. Path Tracking and Obstacle Avoidance of UAV's

Unmanned Aerial Vehicles (UAVs) have attracted increasing attention in the military and
civilian applications, such as mapping, patrolling, search and rescue, and reconnaissance. In
these types of applications, the Path tracking and Obstacle avoidance are fundamental. In this
work, we developed a fuzzy logic based approach to path tracking and obstacle avoiding. We
consider the case that obstacles are either still or moving and appear along the pre-determined
flight path unexpectedly. By using suitable sensors we identify the relative distance between the
vehicle and the obstacle and make timely adjustment to the pre-planned flight path. Fuzzy logic
control algorithms are developed to achieve close path tracking while avoiding obstacles. Some
simulation results are presented in Figure 1-Figure 6.

Figure 1 - Path tracking with one obstacle — shape 1
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Figure 5 - Path tracking with two obstacles across the flight path

B. Fuzzy Logic based Control of multi-UAVs

We also explored a method to achieve close formation tracking control of multi-UAVs by
applying fuzzy logic theory. The formation trajectory is achieved by the control of Wingman’s
heading velocity and heading angle while the lead UAV is maneuvering the given mission path.
Since the values for specifying linguistic terms of the controller output for trailing UAV actually
determine the shape of the input-output shape, they are selected as the main parameters for
optimization. We have successfully used such a fuzzy controller to approximate the nonlinear
system, which can be applied for the supervised learning.

The method guarantees the desired tracking precision and also ensures the control action
smooth under system uncertainties and external disturbances. Simulation of leader-wingman
formation geometry was conducted. Both theoretical studies and simulation results demonstrate
that this control algorithm is simple, less sensitive to the flight aerodynamic model. The
formation geometry is determined by the relative position between the Leader and Wingman as
shown in Figure 6. The formation control objective is to steer the Wingman (follower) to
maintain certain separation distance in longitudinal, lateral and vertical directions.
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Figure 6 - Formation flight in inertial frame




Table 1: Parameters Used for Simulation

Wing Area 300 ft2
Wing Span 30 ft
Mass 776.4 | 1b
Altitude 45,000 | ft
Dynamic Pressure 155.8 | 1b/ft2
Mach 0.85 mach
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Figure 7b - Separation tracking errors of wingman A
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Figure 7e - Separation control signals of wingman B




Neuro-robust and adaptive control algorithms and memory-based control algorithms for close
formation control have been developed. A series of simulations have been carried out. Some of
the results based on the parameters and conditions as in Table 1 are presented in Figure 7a-
Figure 7e. As clearly indicated from the results, the proposed method maintains a desired
tracking precision and also ensures the control action smooth under the system uncertainties and
external disturbances.

C. Neuro-adaptive based Fault-tolerant Control

One of the typical yet devastating faults in flight systems is the loss of the driving (propulsion)
power. In this work, we explore an innovative approach to accommodate such faults in
unmanned aerial vehicles operating under varying fight conditions.

We present a neuro-adaptive control strategy, composed of two Neural Network (NN) units,
the former to adapt to unanticipated uncertainties and the latter to enhance performance by
compensating (funneling) the estimation error caused by the first NN to incorporate the
important and most common problem faced by the airborne vehicles, unforeseen and uncertain
actuating failures. New algorithms are derived to cope with the sub-system failures due to the jet
engine partially losing its propulsion power ensuring the system stability. Simulation study using
a generic model demonstrates a dramatically improved performance in the face of fading power
faults and system uncertainties. Some of the details are presented as follows.

C.1. Introduction

Every component in a flight vehicle provides a certain vital function and the overall system
works satisfactorily only if all components provide the service they are designed for, accurately.
Therefore, a fault in a single component usually degrades the performance of the overall flight.
In order to avoid performance deteriorations or damage to the vehicle, faults have to be identified
and accommodated in a timely manner. In UAV, failures of control elements (sensors, actuators,
etc.) are often encountered. A weak element in this framework is control loops. In fact automated
systems are vulnerable to faults such as defects in sensors or in actuators, which can cause
undesired reactions and consequences. A conventional feedback control design for a complex
system such as UAV may result in unsatisfactory performance, or instability or malfunctions in
system components, causing serious operation and safety problems. Therefore, fault tolerance
has been one of the major issues in control of flight vehicles.'.

A closed-loop control system able to tolerate component malfunctions while maintaining
desirable system performance and stability exhibits fault-folerant property. These systems, also
termed as self-repairing systems, have been a subject of widely scattered studies. In this
framework, the design of Fault Tolerant Control architecture is of crucial importance and
solutions aiming at adapting the control strategy to the presence of the fault are needed in order
to achieve prescribed performances. This is usually achieved by providing the control loop with
a decision making layer that analyzes the behavior of the plant and adapts the control strategy to
hold the controlled system in a region of acceptable performances. This is also phrased as Fault
Tolerant Control (FTC).

Fading power failure causes major problems in many critical control systems such as flight
control systems. It is often not known when a jet propulsion fails and how much the failure is but
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the remaining power could be still enough to accomplish a desired control task such as
emergency landing of a flight vehicle. The question is whether a control system is intelligent
enough to use remaining thrust in the presence of unknown failures. Figure 8 illustrates the
general fault scenario. An adaptive approach, which is capable of controlling systems with
uncertainties, is thus of interest in developing control schemes which are efficient for handling
unknown sub-system failures.

Most existing fault-tolerant control systems are built with redundant controllers™. The
backup control loop is employed once failure of the main controller is detected online. However,
often times, the additional cost, space and complexity of incorporating redundant hardware
makes this approach unattractive. The use of redundant controllers may significantly increase the
capital and maintenance costs of such control systems to unacceptable levels. Therefore, fault-
tolerant control systems with no or less control redundancy are desirable.

Redundancy free fault tolerant control has been studied recently. One approach is to detect
and diagnose system faults online and update control laws accordingly to stabilize faulty
system'. However this method is usually difficult to implement, as it required multiple control
algorithms to be pre-programmed for each possible failure scenario. Various approaches to
achieve control reconfiguration have been researched™ ®*. Fault-tolerant control systems can
benefit from blending the perspectives of intelligent control. Passino’ describes some of the

Actuator o/p
when failure

Input u ) 4 Output
Compensator H Actuator lﬁ ><> “] System |—

Feedback gain IG—E?G—{ Sensor Faults {1—
y

Sensor o/p when failure

Figure 8 - The general fault scenario

limitations of current approaches, and states that a combination of intelligent and conventional
control methods may be the best way to implement autonomous control. However, from the
application point of view, only a few studies have been devoted to flight vehicles. Rauch' talks
about fault accommodation in flight and space shuttle control, where Probabilistic Neural
Networks are used. Polycarpou et al.'! presented a neural network (NN) based fault tolerant
approach and application on Beaver aircraft but did not mention fault occurrence in the primary
flight control system. Chen et al."? presented an LMI-based synthesis scheme for robust fault-
tolerant control systems design, where an unmanned aircraft suffering from wing impairment is
used as a design example. Boskovik et al.'® presented a new Decentralized Failure Detection and
Identification (FDI) and Adaptive Reconfigurable Control (ARC) scheme, well suited for
achieving the desired flight performance in the presence of multiple and applications to F-18
aircraft carrier landing maneuver. NN model based FTC has been studied in recent years'.
However, the key point of applying NNs to the FTC of a practical system is that this model must




be able to approximate the system faults with sufficient accuracy and satisfy the real time
requirement.

Our objective is to design a fault tolerant flight control system guaranteeing stability and
satisfactory performance not only when all components are operational, but also in the case when
actuating power fades and failures occur in flight dynamics. We propose a neuro-adaptive
control scheme that is capable of tolerating component malfunctions and fading jet-engine
power, while still maintaining desirable performance and stability properties. It possesses loop
integrity, reliability, maintainability and survivability. The NN used in this work is an online-
trained network in which the weights are adjusted online accordingly to accommodate faults
occurring during system operation.

C.2. Flight Vehicles Dynamics with Faults

FTC systems can be characterized as robust, reconfigurable or a combination of both. The flight
vehicles, regardless whether they are military or commercial, require precise maneuverability
and control; therefore, the design of a robust controller that assures a safe and precise operation
of the flight vehicle is of extreme importance. A great difficulty related with the design of any
flight control system is that a complete and accurate dynamic model — including aerodynamic
coefficients, is required. However, it is difficult to identify accurately the aerodynamic
coefficients because they are nonlinear functions of several physical variables. Neural networks
have been proposed recently as an adaptive controller for nonlinear systems. The development
and analysis of NN based control algorithms for the control planes of flight vehicles with faulty
dynamics, varying mass, nonlinear velocity and parameter uncertainties is a very challenging
task.

The trajectory tracking of a flight vehicle is achieved through the help of control planes,
which in turn are adjusting the angles of attack, sideslip and body-axis roll of the flight vehicle.
These angles can be observed in Figure 9. We use the dynamics similar to X-37 represent the
nonlinear mathematical model of flight vehicles. The controllers are designed with the
assumption that some of the aerodynamic coefficients are fully understood.
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Figure 9 - Coordinate System




The body-fixed axes, nonlinear equation of motion for a UAV over a flat Earth are given by
Lee and that describes a similar model as follows'™ ':
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where the moments of inertia [;, i=1,2,...9 are defined as follows:
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Definition of state and control variables, forces and moments in the preceding equations are
described in the Nomenclature. It is assumed that the aerodynamic forces and moments are
expressed as functions of angle of attack, sideslip angle, angular rates, and control surface
deflection. L, M, and N are expressed as follows'®:

b b .
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The moments, coefficients and parameters are described in the Appendix. Substituting the
aerodynamic coefficients into the flight dynamic equations yields the following:
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Naming the states x=[@ 4 4], y=[p ¢ r| and z=[6 y] , the nonlinear dynamic
system under consideration can be described as follows:

x=A(a,p.4,.0)+B(a.5.4.6)y(p.q.7) (10)
jz:C(a,ﬂ,p,q,r)+D(a)y(p,q,r)+E(a,,B)u (11)
z'=H(¢,9)y(p,q,r) (12)
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where 4, B, C, D, E and H represents the grouped terms of Eq. (10) — Eq. (12) in order and
u =|:5e o, 5,] is the control input

Remark:

The mass m of the reusable vehicle is considered time-varying due to the m, fuel

consumption - especially during the ascend mode. Therefore, the total mass of the vehicle is:

m=my+m,+m,

where

m, real dry weight
fuel weight (variable)

I

m payload weight

P

Note that this change in mass affects the dynamics, however, the change in UAV’s mass dm/dr is

considered unknown, making m unknown in the model, thus should not be used directly in
control design.

Observations:

The simulation studies show that the norm of the gain matrix from Eq. (10) is negligible,
and therefore, this leads to a simplification of the dynamic model under consideration
without any lost of generality.

The dynamic system equation described in Eq. (10) — Eq. (12) is controllable only if the
matrix BE is invertible. Matrix E is known from the literature as being invertible. As for
matrix B, the control surfaces of the reusable launch vehicle are designed to control each
axes angular rate of aircraft independently; therefore, the matrix B is invertible for all
cases. Numerical studies for the aerodynamic model also show that B is always invertible.
The dynamic system presented can be recast in the second-order form by deriving Eq. (8)
and substituting Eq. (9); it can follow:

o d
x=EA(.)+BC+[EB(.)+BD]y+BEu (13)

The above equation is the governing equation of motion for the aircraft and will be used for
the control design and stability analysis processes of the following sections. All the effects
caused by possible failures in the system can be lumped into an uncertain term. The fault

dynamics can be described as follows:

f; =+x(-T,)r() with
0 it txT ' (14)

=3 o
1-e*" 77 otherwise

z(!—T,)={

11




Note that the faulty function described above covers both the jump and continuously time
varying faults in both directions. The additional term added to the system dynamics now
represent the effect of system faults. The model of the actuator power loss failure can be
represented as'’

u,=Eu (15)

E, eR™ is the actuator fault matrix with the following diagonal structure

En 0 ... O
0 & w0

Bl e e 0 (%
0 0 0 g,

where

€, = 0 represents power loss
0 < &, <1 represents fading power
€, =1 represents healthy actuator

i=12,..,n

Properties
The faulty dynamics defined in Eq. (15) have the following properties.

e The matrix Eyis a diagonal matrix that is positive definite. This fact can be verified by
observing the limits of &;.

¢ Such matrix is nonsingular; therefore all the eigen values are non-zero.
e It is real symmetric; therefore all the eigen values are real numbers.
e The eigen values of such matrix can be given as :

E, = dzag(gf1 ...... gﬁ,)
= &,y...£,, are eigen values of £,

Thus, the dynamics of the RLV Eq. (13) become

=
dt

xX=

AQ)+ BC+[%B(.)+BD}y+RE/u+ff (17)
Define error dynamics as

* :
e=x—x and s=e+kye (18)

where ky> 0 is a design constant. The control gain is represented as follows
R=BE=R,+AR
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Error dynamics of Eq. (17) can be simplified with the error function defined as in Eq. (18) and
represented as:

§=fo+Af +REu (19)
where
f, = BC+BDy—X +k,e—Known, Time variant

Af=iA(.)+iB(.)y+AREfuiff — Unknown, Timevairant
dt dt (20)
R, —Known Part of control gain

AR - Unknown Part of control gain
Note for the sake of simplicity, the arguments of the functions were omitted, even though this

does not affect the clarity. Also a part of control gain Ry is available if not the total control gain
RE;. The framework for a control to deal with this type of failures is illustrated in Figure 10.

Actuator System
Faults Faults
J l _x.
u | Ur J | -
E, UAV 1

A
NN Controller ¢

-~

Figure 10 - Controller framework for fault tolerance

-

Assumptions:

For the system to admit a feasible solution under faulty condition, we need to assume that
there exists a positive constant ¢, >0 such that |AR|+¢, <|R|

Properties:

1) Matrix E is known from the literature as being invertible. As for matrix B, the control
surfaces of the UAV are designed to control angular rate along each axis of the aircraft
independently; therefore, the matrix B is invertible for all cases. Numerical studies for
the aerodynamic model also show that B is always invertible.

2) Bl=ET>0

3) If Ry is full row rank, then there exist constants ¢y, and ¢z such that

o Ioff S 5" RE B 5 S o o]
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where ¢, >c,, >0 denotes the maximum and the minimum eigen values of RoER,"
respectively. This proposition is valid since the matrix is symmetric and positive-definite.
This can be justified by noting that Eris a diagonal matrix and Ry = BE is invertible as
explained above. Also observing the properties of Er defined in the previous section, the
matrix RE R] has positive, real eigen values.

Now we proceed to design an adaptive control algorithm for the above described highly
coupled, nonlinear, uncertain, faulty complex system.

C.3. Neuro-adaptive Fault-tolerant Control Design

The major challenge in control design for the above described system is the nonlinear and
uncertain nature of AR and Af. The basis for most stable adaptive controllers has been to
reorganize Af as a linear combination. However, this method is not suitable for complex systems
such as aircrafts since it involves complicated design procedures and heavy computations.
Another approach is to estimate Af via multilayer NNs and train these networks via gradient
algorithms. Recognizing the potential instability associated with these algorithms, several
researchers have proposed NN control schemes using on-line and stable training mechanism
based on Lyapunov stability theory. We further extend these works in an innovative path.

We “reconstruct” Af via the first NN unit as

I =fo+WIT'/’1

Where
fo the available part of f

W, e R™ the optimal weight of the NN

v, €R" the base function of NN whose selection typically include linear function, sigmoid

function, hyperbolic tangent function, radial basis function, etc.
Let the discrepancy between fand fyy be denoted by:

£=f~fin 21

where ¢ is the reconstruction error. With the support of the approximate theory of multilayer
neural networks, such an error can be made arbitrarily small provided that certain conditions
(e.g., sufficiently large numbers of neurons, sufficient smoothness of f etc.) are satisfied. This
has been the basis for many NN based control laws. In reality, however, it should be noted that
one can only use a network with a finite number of neurons and that the nonlinear function being
reconstructed is not smooth enough. Thus, during system operations, the reconstruction error
sometimes is bounded by a constant, but at other times it may not necessarily be confined to that
number. For this reason, simply assuming that ||¢|| is uniformlgf bounded by a constant does not

warrant the success of the control scheme, as seen in Figure 11'°.
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Figure 11 - The possible profile of NN reconstruction error

For executing the idea, in our development, we remodel reconstruction error as follows

e=ce +(1-c)e,
1 if the NN works satisfactorily

with ¢= { 0 if the NN fails to work well

To make the problem solvable, we make the assumption that

lgl<d, <o, and |ig Il f~fo - wi = d ().

The point to be made is that dpand d,(.) are still unavailable and should not be included in the
control scheme directly. Another major challenge due to the fact that we do not know when the
NN behaves well. Sanner and Slotine'® proposed a method of partitioning the state space into Ay
and 4; and assumed that the NN works satisfactorily within 4, Here we take a different method
to address this issue. Namely, we incorporate two NN units in the control scheme, with the first
NN unit compensating the lumped nonlinearities/uncertainties and the second NN unit
attenuating the effects due to the NN reconstruction error and the other resulting uncertainties.
The overall control scheme is given by

u= R (ks fo —t (22)
The estimate neural network of the uncertain part 4fis:
J}NN =fo+erV’1 (23)

The terms used in the controller and estimation of the first neural network are:

Ucq a compensating signal to be specified

ko> 0 = a constant chosen by the designer

A

W, = is the estimate of the ideal weight values

Before defining the signal u., the following signals and scenarios are to be considered. It is
interesting to observe that the control algorithm remains unaffected even though the control gain
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is considerably affected by the actuator failures. This is one of the features of the neuro-adaptive
controller. It adapts to the changes in the uncertainty without necessitating the changes in the
control algorithm. With the control of the above scheme, the original system Eq. (19) becomes

§=—hRERs+Wy;~RERu,+n (24)
where W, =W, -, is weight estimation error and
n=e+(I-RER)(f,+W v, (25)

is the resultant uncertainty to be attenuated by the second NN unit. Expressing # in a similar
fashion as done earlier, we have, |7] <7,

Vo=, 0F (26)

where N, is an integer. The weights and scalar function are defined as:

Dy =y Oy, = W] 0y 5 = iufr“l_RoEfR)T"
SE.

and Yy,=LYy,,= e | Fyas = "W'W’"

7. 1s estimated as
N,
u= 20w (£) = 07w (¥) @7)

where N, = N; +3, @, denote the estimate weights and ¥y,(.) are some basis functions
satisfying

Y, (X)) 2Y, (28)

The compensating signal can now be defined as:

Nﬂ
;V’ma}TV’ﬂ (Y)

- N
2 ¥ [sl+v
i=1

U

ca

. (29)

C.3.1. Stability Analysis

For all control systems, and for adaptive control systems, stability is the primary requirement. In
this section we use the Lyapunov’s stability theory to prove that the proposed new adaptive
scheme in the above section is able to achieve the control objective. We choose a Lyapunov
candidate function

16




V=V+V,+V, (30)

with

Vi=ssTs, V,=——tr(F W),
2 2g,
(31)
V3 =
2gllcmin

(@-c,,0) (0-c,,®)

where g1 > 0 and gy > 0 are free design parameters affecting weight learning rate and control
performance, ¢min> 0 is the minimum eigen value of RE/RT. Its derivative along the vector field
is _

V, =—k,s" (ROE,ROT)S +s"W Ty, +s"n—s"RE R u, +V,+V,

—koCoin ISI* +© + tr(W,T (y/,sr - g,"V;’) )
I

IA

with

O=s"n-s"RERu, —gl(a)—cma'))rai) (32)

n

Before presenting the weight tuning algorithms, let us focus on Q. With u., as in Eq. (30) and
the upper norm bound on 7 as in Eq. (25), we have

N
AL N

<o’y —= ——(@-Cpa®) @

> g
v s+ =
i=]

N
[Svatdve
=(a)—c ) (2)) i=! D +va,

min N
Yy ll+v &
i=1

(33)

where @, = max (@;). Note that in deriving the above equation, we have used the facts that

Nl
o 2 v, sl

o'Y<o'y, <o,y y, and ———x1, Vv>0

a

- Z} Yu, Isf|+ v
-

Combining Eq. (33) and Eq. (34), we come up with the following weight tuning algorithms:
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A

W,=-c,W,+gw,s"

Nl
Z Yu "5"2 Y
- A o 34)
@ ==—0,0+&gy |
2 W+
i=1
Consequently,
; 2 O 5 T
V<-c,kolls|I*+—tr(W, W,)
1
- o (35)
+—L(@-c,0)o+ve,
I
Completing the square we can further rewrite Eq. (36) as:
7 2 o, o Ty
Vs _cminko ” s ” _Z_-tr(Wl W])
I
- 91 _(w-c, 0) (@-c,,d)+5 (36)
nglen min min
= AV, = AV, - AV, + 8
where
- 5 oy +- 20 T
5—va)m+2gl W, Wl)+2gua)a) (37)
and 4 =2¢,k, A =0, A4=o0y (38)
are constants independent of s. Note that Eq. (37) implies that ||s||, #, andé are bounded.
Furthermore, from Eq. (37), we have
V <—k,Cpin ||s||2 +6 (39)
It is seen that 7 is negative as long as
Ry -
ke .
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0" min

b4 . .
Therefore, s is confined in the regiong = [ s| s < ( - 4 ) 2} . From previous lemma, we establish
{54

that the control error is bounded.

C.3.2. Control Strategy with Alternate Gain

An alternate control gain can also be used to achieve the above performance. This alternate gain
enhances the performance of the control but the inverse is tedious to compute. The neuro-
adaptive control for the system described as in Eq. (19) is given as:

u=R0"(—k0s—J}NN—uca) (41)

where all the terms are as defined in the previous section.
Properties

1) The matrix Eis a diagonal matrix that is positive definite. This fact can be verified by
observing the range of &.

2)  Such matrix is nonsingular; therefore all the eigenvalues are non-zero.

3) It is real symmetric; therefore all the eigenvalues are real numbers. The eigenvalues of
such matrix can be given as :

= &,,....£;, are eigen values of £, (2)

4)  Matrix E is known from the literature as being invertible. As for matrix B, the control
surfaces of the reusable launch vehicle are designed to control angular rate along each
axis of the aircraft independently; therefore, the matrix B is invertible for all cases.
Numerical studies for the aerodynamic model also show that B is always invertible.

5)  fRyis full row rank, then there exist constants ¢z and cma such that

o 517 < 5 |RoE Ry |5 < e I 43)

where ¢, =c.. >0 are the eigenvalues of the matrix RE R;'.

- =min(eig(Ef))=8fmin >0 and ¢, =max(eig(Ef))=s/m >0 (44)

With the control of the above scheme, the original system Eq. (19) becomes
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§=—kRE R s+ Wy, —~RERu,+n

where W, =W, - W, is weight estimation error and

n=e+(I1-RER™)(f, +Wws ) (45)

is the resultant uncertainty to be attenuated by the second NN unit. Expressing # in a similar
fashion as done earlier, we have, |7] <7,

Ny +2

Vo= WY, (46)

i=1

where N; is an integer. The weights and scalar function are defined as:
Wr,+1 =do= W42 =|lWI" and YN,+1 =1, YN1+2 = "‘/’1 "

% 1s estimated as

N,
Fa=2 Wy (X)) =%y () (47)
i=1

where N, = N1 +2, @, denote the estimate weights and y;,(.) are some basis functions satisfying

yn, ()21, (48)

The compensating signal can now be defined as:

Nﬂ
Z‘//n, ‘Q’TWH (Y)
i1

= _N
Z‘/’m s+

i=1

u

ca

o (49)

C.3.3. Stability Analysis of the Control Strategy with Alternate Gain
We choose a Lyapunov candidate function same as described in the previous section. Its
derivative along the vector field is

V, =—kys" RER}'s+s"Wy; +s'n—s"RE R'u,+V,+V,

s +0 +or(7 (wis” - &) )

IA

_kocmin

with
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O=s"n —sTROEfRO"um —L(w—cmmﬁz)r W (50)

o

Before presenting the weight tuning algorithms, let us focus on Q. With u., as in Eq. (49)
and the upper norm bound on 7 as in Eq. (45), we have

Dvall Wy

QS“S“M}-Y—W—?(W—C_W) {4’
vy lIsl+v 2
= (51)
Z'/’n, Mz . ST
=(w—cp®) | = ——Ww [+,
Svild+v 5

Note the expression for the signal Q is the same as Eq. (34). Thus, the rest of the stability
analysis follows the previous section and we can prove that the control error is bounded in the
region described as in Eq. (40).

The control strategy change does not affect the performance of the controller in any way
although the gain described in section A is easier to compute than the gain of control strategy
described in the above section, but the latter method gives a better tracking precision.

C.4. Simulation Results

In this section, we present a series of simulations to illustrate the effectiveness of the proposed
neuro-adaptive fault-tolerant control in tracking a desired angle of attack a, sideslip £ and body-
axis roll @ of the UAV. :

Table 2: Numerical Values Used for Simulation

Parametér Symbol Units Value
Wing Area S m” 391.2
Thrust ' Lb 27,000
Mean Aerodynamic Chord £ Ft 11.32
Roll Inertia I, kg.m2 1,997,922
Pitch Inertia L kg.m” 276,629,966.8
Yaw Inertia 8 kg.m2 28,383,800
UAV Mass M Kg 103,756
Wing Span B M 292
UAV Velocity vV Mach 0-15
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The control strategy explained in earlier is utilized. Matlab is used for the simulation. The
coefficients similar to the model X-33 are used. The simulation models include all non-linearity
in the equations of motion, and the values of the parameters and coefficients are given as in
Table 2" ', The payload mass is considered to be zero in the reentry phase and the mass of
fuel is considered to be exponentially decreasing non-zero function with respect to time as
m, =m,..  *e',t—Time in seconds .

We chose the basis functions for the first NN unit as:

i e—l(lxl—ch- )?

'aX’ e T .
WI(CU y) 1+e'i'(lxl'ch) .

(04

cn= 0204 .. 1XI=|8],
¢

A=0.35.

The basis functions for the second NN unit are selected as :

@ =v.r=[lx] | « . .1 v ]lx-

N ¢ ¥

Fifteen NN basis functions were used for each of the NN units: y € R/, j=15. All the weights
are initialized at zero in the simulation. The command values of a,  and @ are applied to the

UAV are a'=0.8+0.lsiné, B =01+02e, 4" =08+0.01cost.

The system faults for the numerical simulation are chosen to occur after 15 seconds and
continue to appear till the end of the simulations. The faults represented in Eq. (14) with & = 0.5
were chosen.

The actuator faults occur after 30 seconds and also continue to appear all along till the end of
simulations. These faults are modeled based on Eq. (16) with &; chosen as

1. t<30 .
fa = 1—%*‘sin(z‘—i)l,t>30’l=1 """ -

Figure 12 — Figure 18 shows the system response when the actuator power and sensors fail.
Each figure has the actual and desired paths, the tracking error, and the action of the control,
profile of faults and estimated weights for the first and second NN. It can be seen that the
tracking is achieved within a small error. Note that the first NN weights remain unaffected by
the fault occurrence.
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